
The Freefall Manual

Stingworks

September 16, 2010

Copyright (c) 2010 Stingworks
All Rights Reserved

Stingworks reserves the right to make changes without further no-
tice to this document and/or to the product to improve reliability,
function, or design. Stingworks does not assume any liability arising
out of the application or use of any product or application described
herein.

Stress above one or more of the limiting values specified in this doc-
ument or in the referenced component datasheets may cause permanent
damage to the product or a component of the product. Exposure to
limiting values for extended periods may affect reliability.

This product is not designed for use in life support appliances, de-
vices, or systems where malfunction of these products can reasonably
be expected to result in personal injury. Stingworks customers using
or selling these products for use in such applications do so at their own
risk and agree to fully indemnify Stingworks for any damages resulting
from such improper use or sale.

Contents

Abbreviations and Acronyms iv

1 Freefall Basics 1
1.1 Overview . 1

1.1.1 Hardware . 1
1.1.2 Software . 3
1.1.3 Firmware . 4
1.1.4 Power Distribution 6
1.1.5 Pin Descriptions 7

1.2 Programming . 10
1.2.1 USB Bootloading 10
1.2.2 SPI Programming 11
1.2.3 RS232 Bootloading 12

2 Freefall API Reference 15
2.1 Freefall General Functions 16
2.2 Accelerometer (MMA module) 17

2.2.1 Accelerometer Coordinate System 17
2.2.2 Using the Accelerometer in Firmware 17
2.2.3 Advanced Accelerometer Features 18
2.2.4 Sample Data . 18

2.3 Power Management (PMAN module) 19
2.4 USB Connectivity . 20

2.4.1 Hardware . 20
2.4.2 Firmware for USB Mouse 20
2.4.3 Firmware for Custom Packet I/O 20
2.4.4 Software for Custom Packet I/O 21

2.5 RS232 USART Connectivity 23
2.5.1 Hardware . 23
2.5.2 Firmware for Sending Custom Packets 23
2.5.3 Software for Receiving Custom Packets 24

2.6 LED Drivers (LED module) 25
2.6.1 Hardware . 25

ii

2.6.2 Firmware . 25
2.7 Light Sensor (CDS module) 26

2.7.1 Hardware . 26
2.7.2 Firmware . 26

2.8 Wireless (MiRF module) 27
2.8.1 Hardware . 27
2.8.2 Firmware . 27
2.8.3 Software . 28

2.9 Arduino-compatability 29
2.9.1 Configuring the Arduino IDE to Program the

Freefall . 29
2.9.2 Correspondence between Freefall Pins and Ar-

duino Pins . 29
2.10 Code Licensing . 31

3 Source Code Examples 33
3.1 Blinkenlights . 33
3.2 Reading a Light Sensor 34
3.3 Reading the Accelerometer 35
3.4 USB Sensor Reporting and Control 36
3.5 Tilt-Controlled Mouse 37

References 39

Index 43

Abbreviations and Acronyms iii

Abbreviations and Acronyms

A = Ampere(s)
API = Application Programming Interface
CDS = CaDmium Sulfide light sensor
GND = electrical GrouND
HID = Human Input Device
IDE = Integrated Development Environment
ISP = In-System Programming
LED = Light Emitting Diode
MiRF = Miniature Radio Frequency module
MISO = Master-In Slave-Out
MMA = MicroMachined Accelerometer
MOSI = Master-Out Slave-In
NiMH = Nickel Metal Hydride
PCB = Printed Circuit Board
PDIP = Parallel Dual Inline Package
PMAN = Power MANagement module
RAM = Random Access Memory
RS232 = Recommended Standard 232 (legacy serial protocol)
RX = Receive
SCK = SPI Clock
SPI = Serial Peripheral Interface bus
TX = Transmit
USB = Universal Serial Bus
V = Volt(s)

iv Abbreviations and Acronyms

Chapter 1

Freefall Basics

1.1 Overview

The Freefall is a unique union of hardware, firmware, and software en-
abling rapid prototyping of battery-powered accelerometer-based ap-
plications. It allows the developer to quickly move from concept to
application, whether or not the breadboard is an intermediate step.

This document provides detailed information on the hardware, soft-
ware, and firmware components of Freefall and should be treated as a
reference. Throughout, it is assumed that the reader has some ex-
perience programming for embedded systems. For more general in-
formation, consult a book on microcontroller system development ba-
sics. For details on the functioning of a subcomponent of the Freefall
such as the microcontroller or accelerometer, consult the manufactur-
ers’ datasheets, enumerated at the end of this document.

For frequently asked questions, source code, and the lat-
est version of this document visit the Stingworks website at
http://www.stingworks.com/.

1.1.1 Hardware

In the hardware dimension, the Freefall is a 24-pin, 900mil-wide parallel
dual inline package (PDIP) device designed for use in a breadboard
or directly in an embedded device. The printed circuit board (PCB)
contains the following major hardware components:

• The Freefall has at its core an ATMEL AVR ATmega168
microcontroller. This AVR’s crucial features are:

– 8-bit Reduced Instruction Set (RISC) core

2 Freefall Basics

– clocked with a 12MHz quartz crystal

– 16 kilobytes of built-in flash program memory

– 1024 bytes of volatile memory (SRAM)

– 512 bytes of flash data memory (EEPROM)

– programmable in assembler or C

– high-quality, free, and open-source development tools

• For acceleration sensing, the Freescale MMA7455 microma-
chined accelerometer is employed:

– three-axis, simultaneously read

– ±8g range

– 10-bit resolution

– 250Hz sampling rate (125Hz bandwidth)

– suitable for tilt or dynamic acceleration sensing

• The Freefall boasts a built-in battery recharing module with
the following capabilities:

– can charge 3xAAA Nickel Metal Hydride (NiMH) cells from
USB

– charge rate adjustable at run-time

– can recharge while running

– batteries can be omitted for strictly bus-powered applica-
tions

• There is no Serial-to-USB converter, unlike most AVR de-
velopment systems. Instead, a firmware-only USB driver is used.
The only USB-related hardware is a few impedance-matching re-
sistors and the Mini-B connector.

• While there is no wireless capability built-in to the Freefall, wire-
less may be easily added by way of a low-cost add-on module
based on the Nordic Semiconductor nRF24L01+. This mod-
ule provides robust wireless communication on the 2.4GHz ISM
band at up to 2Mbps. All pins required for communication with
the wireless module are lined-up, and example code is provided.

Overview 3

1.1.2 Software

On the PC software side, a powerful open-source toolchain is at your
fingertips. The basic workflow is:

write your C-code in your favorite editor

→ compile the code with AVR-GCC

→ program the flash with AVRDUDE

→ get live feedback through SteamingPot.

For more information on how to write code for the Freefall, see the
Stingworks website.

Figure 1.1: Example PC-side software for live feedback from the
Freefall. This software and its source-code are provided on the Sting-
works website.

Alternatively, the Arduino language and development environment
may be used to develop for the Freefall. However, the example code
that comes bundled with Freefall requires modification to run in the
Arduino IDE, with the exception of the Blink arduino example. See
Section 2.9 for details.

4 Freefall Basics

1.1.3 Firmware

The Freefall ships with a USB bootloader programmed into the special
2K bootloader of the AVR’s program memory. This allows reprogram-
ming the firmware without an in-circuit programmer (ISP).

Furthermore, the Freefall comes with a library of functions and
drivers for immediate access to the hardware on the board, e.g.:

• Serial Peripheral Interface (SPI) driver

• Pulse-Width Modulation (PWM) driver

• Analog-to-Digital Conversion (ADC) driver

• MMA7455 accelerometer driver

• Nordic nRF24L01+ 2.4GHz Wireless driver

main()
User Program

PMAN
Power Manager

USBPACK
USB Packet I/O

USART
RS232 Module

MMA7455
Accelerometer

MIRF
2.4GHz Wireless

SPI
Inter-Chip Bus

XYZ data

SPI
transfers

SPI
transfers

duty
 %

sta
tu

s

packets

packets

Firmware Module Dataflow

ADC
Analog Inputs

analog data

byte stream

PWM
Pulse-Width Mod

co
n

tr
o
l

Figure 1.2: Interaction between the several code modules provided with
the Freefall.

Overview 5

For examples of how to write firmware applications to run on the
Freefall, see the applications directory of the Freefall software bundle
or in the Source Code chapter of this document. However, the basic
structure of a firmware program is as follows:

#include "freefall.h"

void main() {

freefall_init();

/* insert additional initialization code here */

while(1) {

/* insert code to run periodically here */

wdt_reset();

}

}

6 Freefall Basics

1.1.4 Power Distribution

The Freefall is designed for versitile, low-power operation. Any combi-
nation of USB-bus power and battery power may be used. As a result,
there are several different voltage levels simultaneously present on the
Freefall PCB. The following diagram may help to clarify the relation-
ship among these voltages, and how the power distribution works.

ATmega
Microcontroller

Charge Rate
Controller

Power Management Schematic

3xAAA NiMH
Battery Pack

MMA7455
Accelerometer

MIRF
2.4GHz Wireless

Linear Regulator Output Drivers

V_EXT
USB Power

5V

3.4-5V

3.3V

Figure 1.3: The various power levels and their interactions are visual-
ized.

Overview 7

1.1.5 Pin Descriptions

The Freefall communicates with its environment by way of pins located
along its sides. The following diagram gives a visual reference for pin
assignments.

Figure 1.4: Pinout for Freefall. (*) indicates that the Freefall pin func-
tion is significantly different than the direct AVR pin function; see the
detailed pin descriptions below.

In detail, the function of each pin is:

1. VBATT - Battery Voltage Input
Nominally 3.6V power input from a 3xAAA Nickel Metal Hydride
(NiMH) rechargeable battery pack. Voltage must be in the range
of 3.0-5.0V.

2. VDD - Regulated 3.3V Output to Battery Temperature
Sensor Powers temperature sensor in battery pack. Voltage will
be 3.3V or VBATT-150mV, whichever is lower.

3. GND - Common Ground to Battery Pack
Ground shared with all devices connected to the Freefall.

4. BTEMP - Battery Temperature Analog Input
Analog input from battery temperature sensor. AVR Pin PC3.

8 Freefall Basics

5. CDS - (CdS Light Sensor) Analog Input
An analog input with selectable 22k pullup/pulldown. Designed
to be used with a Cadmium Sulfide (CdS) light sensor. See Sec-
tion 2.7.2 for details. AVR Pin PC2.

6. GND - Common Ground to CDS Sensor
Ground shared with all devices connected to the Freefall.

7. LED0 - LED Driver Output 0
A high-current open-drain output selectable between High
Impedance (HZ) and Low, with optional 8-bit PWM. Designed
to be used to sink current from one or more LEDs or other pe-
ripherals. To be used in conjunction with VLED0. See Section
2.6 for details. AVR Pin PD6.

8. VLED0 - Fused Current Source for LED0
Nominally 3.6V power output from battery pack. Protected by a
resettable fuse (PTC-type) with 1.5 ampere hold current and 2.2
ampere trip current, shared with other VLED outputs. Designed
to provide power to a small number of LEDs, relays, or other
high-current peripherals.

9. LED1a - LED Driver Output 1a
A high-current output selectable between High Impedance (HZ)
and Low, with 8-bit PWM. Designed to be used to sink current
from one or more LEDs. To be used in conjunction with VLED1a.
See Section 2.6 for details. AVR Pin PD5.

10. VLED1a - Fused Battery Voltage Output for LED1a
Electrically identical to VLED0.

11. LED1b - LED Driver Output 1b
Electrically identical to LED1a.

12. VLED1b - Fused Battery Voltage Output for LED1b
Electrically identical to VLED0.

13. MM - “MiRF” Module Mode Select Output
Required for optional MiRF 2.4GHz wireless module. See Section
2.8 for details. In the absence of the MiRF, may be used as a
general purpose input/output pin. AVR Pin PD4.

14. MSS - “MiRF” Module Slave Select Output
Required for optional MiRF 2.4GHz wireless module. See Section
2.8 for details. In the absence of the MiRF, may be used as a
general purpose input/output pin. AVR Pin PD7.

Overview 9

15. MOSI - SPI Master-Out Slave-In (MOSI) Output
Used to interface with programmer and other SPI peripherals.
Available for general purpose input/output only if SPI (including
accelerometer) is unused. AVR Pin PB3.

16. MISO - SPI Master-In Slave-Out (MISO) Input
Used to interface with programmer and other SPI peripherals.
Available for general purpose input/output only if SPI (including
accelerometer) is unused. AVR Pin PB4.

17. SCK - SPI Clock Output
Used to interface with programmer and other SPI peripherals.
Available for general purpose input/output only if SPI (including
accelerometer) is unused. AVR Pin PB5.

18. GND - Common Ground to Programmer
Ground shared with all devices connected to the Freefall.

19. RST - AVR Reset Input
Strongly pulling this pin to ground to overcome the internal 7k
pullup causes the AVR to enter reset. Used to reset the device
or to invoke bootloader for USB programming. Used by all SPI
ISP programmers to initiate SPI programming session.

20. VDD - Regulated 3.3V Output to Programmer
Provides power to ISP programmer, if needed. Voltage will be
3.3V or VBATT-150mV, whichever is lower.

21. TX - USART Transmit Output / USB D- Input/Output
Operates as serial transmit (TX) pin in RS232 mode, or as USB
Data- (D-) pin in USB mode. May also be used as general purpose
input/output if neither USB nor RS232 are used. AVR Pin PD1.

22. RX - USART Receive Input / USB D+ Input/Output
Operates as serial receive (RX) pin in RS232 mode, or as USB
Data+ (D+) pin in USB mode. May also be used as general
purpose input/output if neither USB nor RS232 are used. AVR
Pin PD0.

23. VEXT - External Charger or USB Voltage Input
Placing an external voltage of 5-9V on this pin allows the Freefall
to operate while optionally charging a NiMH battery pack. This
pin is protected by a resettable PTC-type fuse with 1.5 ampere
hold current.

24. GND - Common Ground to USB or Serial Port
Ground shared with all devices connected to the Freefall.

10 Freefall Basics

1.2 Programming

We assume that the user is familiar with the C programming language.
Given this, you need only to know how to compile C programs and
load them onto run the Freefall. The included example programs all
contain a file called main.c which holds the main C program. This
file is combined with other code located in header files (.h) and other
code files (.c) and compiled into a hex-file (.hex) which is an embedded
binary. This hex-file is then loaded (“programmed”) onto the Freefall
using one of the three available programming methods. This process
of compilation and programming is automated by the make program,
which derives its instructions from the Makefile, located in each exam-
ple directory. The user is encouraged to experiment with the example C
files and Makefiles to get comfortable with this development paradigm.

We will now detail the three available programming methods.

1.2.1 USB Bootloading

The Freefall is shipped with a USB bootloader.1 This software allows
the Freefall to be reprogrammed from a PC over USB.

Hardware

The only required hardware is a standard USB cable. The correspon-
dence between USB wires or connector pins and device pins are as
follows:

USB wire/pin Freefall pin
1 +5V (red) 23 VEXT
2 D+ (white) 21 TX
3 D- (green) 22 RX
4* GND (black) 24 GND

* Note that GND is pin 5 on a USB Mini-B connector.

Software

To program any of the example projects, reset the Freefall (either by
grounding the RST pin or by cycling power) and run

make boot

1Based on USBaspLoader. See www.stingworks.com/freefall for details and
source code.

Programming 11

in the project directory on your PC within 3 seconds of the reset. For
details, see the Makefile for the example.

If you wish to program a hex file directly, say example.hex, reset
the Freefall and within 3 seconds run AVRDUDE with the following
command-line:

avrdude -c usbasp -p m168 -U flash:w:example.hex .

The hex file will be programmed over USB. The bootloader will then
exit, and the newly-loaded application will run.

Note that depending on your system configuration, you may need
administrator privileges (“root” on a Linux system) for the Freefall to
be properly recognized.

1.2.2 SPI Programming

An SPI ISP programmer may be used to program the Freefall. We
recommend the USBtinyISP available from Adafruit Industries, and in-
structions here are geared towards users of this programmer. For more
information on SPI programming, consult your programmer’s manual
or ATMEL’s application note on SPI programming.

Hardware

Most AVR ISP programmers use either a 6-pin or a 10-pin ribbon
connector. We recommend using a 10-pin connector of no more than
30cm in length. The correspondence between ISP wires/pins and pins
on the Freefall are as follows:

ISP pin (6 or 10-pin connector) Freefall pin
+Vcc 20 VDD
RESET 19 RST
Ground 18 GND
SCK 17 SCK
MISO 16 MI
MOSI 15 MO

Warning: The Freefall is designed to provide power to the ISP
programmer on the VDD pin at 3.3 volts. Therefore, during ISP pro-
gramming, either your programmer must be configured to receive power
from the Freefall or you must not connect the VDD pin so as to avoid
power supply contention. In the case of the USBtinyISP, this means
that the USB PWR jumper must be removed.

12 Freefall Basics

Software

To program any of the example projects, simply run

make freefall isp

within the project directory. The Freefall will be automatically reset by
the programmer and will be programmed. For details, see the Makefile
for the example.

If you wish to program a hex file directly, say example.hex, run
AVRDUDE with the following command-line:

avrdude -c usbtiny -p m168 -e -U flash:w:example.hex .

Warning: Care must be taken when changing the value of the
AVR’s configuration fuses. Most importantly, the SPIEN fuse must be
programmed (set to the value of 0) and the RSTDISBL fuse must be
left unprogrammed (set to the value of 1). Changing either of these
fuses will render the AVR permanently unprogrammable. Furthermore,
the stock USB bootloader requires the default settings for the WDTON

and clock source fuses; therefore, if you do not have access to an SPI
programmer, you should not modify those fuses.

1.2.3 RS232 Bootloading

A third programming option is available for those who do not wish to
use USB but prefer to use legacy RS232 serial communication. The
RS232 bootloader is STK500-compatible, meaning it can be used with
many software programs including the Arduino IDE.

Installing the Bootloader

The legacy bootloader must be installed on the Freefall via SPI pro-
gramming. To do so, enter the old-boot directory and run the com-
mand

make isp .

Hardware

The RS232 bootloader requires the GND, RX, and TX pins to be con-
nected to a serial port operating at TTL voltage levels (0-5V or 0-3.3V).

Warning: Do not connect the Freefall directly to a PC serial port!
PC serial ports typically operate at ±12V which will likely damage the
AVR. A level-converter (such as a MAX232) or a TTL-level USB-to-
serial adapter must be used.

Programming 13

Software

To program any of the example projects using the RS232 bootloader,
reset the Freefall and within 3 seconds run

make old-boot

in the project directory. The Freefall will be automatically reset by the
programmer and will be programmed. For details, see the Makefile

for the example.
If you wish to program a hex file directly, say example.hex, run

AVRDUDE with the following command-line:

avrdude -c avrisp -p m168 -P /dev/ttyS0 -b19200 -U flash:w:example.hex ,

changing the serial port specified after -P if nessisary. If you use a USB-
to-serial converter, the serial port name is most likely /dev/ttyUSB0.

14 Freefall API Reference

Chapter 2

Freefall API Reference

16 Freefall API Reference

2.1 Freefall General Functions

• freefall init() - this function must be called at the beginning
of any firmware application to initialize the various modules in
the Freefall. The correct data directions and default I/O pin
levels are set, the ADC, CDS, PWM, LED, MMA, and PMAN
modules are initialized, and the LED output drivers are set to
high-Z mode.

• force reset() - performs a soft reset, entering the bootloader.
This is accomplished by allowing the watchdog timer to reset the
AVR.

• uint8 t pack float(float f, float min, float max) - re-
turns an 8-bit compressed form of a floating-point input f, on
the range between min and max.

• float unpack float(uint8 t packed, float min, float

max) - decompresses a floating-point number which was com-
pressed with pack float.

Accelerometer (MMA module) 17

2.2 Accelerometer (MMA module)

The Freefall is equipped with an on-board ±8g 3-axis digital micro-
machined accelerometer (MMA7455) capable of reporting 10-bit accel-
eration data at 250 samples/sec.

2.2.1 Accelerometer Coordinate System

Figure 2.1: Direction of xyz-axes. Note that the z-axis is coming out
of the page.

2.2.2 Using the Accelerometer in Firmware

The accelerometer is communicated with via the following C functions
defined in mma7455.h. Note that freefall init() must be called to
initialize the accelerometer before using any of the following functions.

• mma7455_data_ready() - checks to see if a new measurement is
available

• mma7455_data_overrun() - checks to see if measurements were
missed due to slow reading

• mma7455_read_x() - returns a signed 8-bit reading of x-axis ac-
celeration

• mma7455_read_y() - returns a signed 8-bit reading of y-axis ac-
celeration

• mma7455_read_z() - returns a signed 8-bit reading of z-axis ac-
celeration

18 Freefall API Reference

• mma7455_calibrate() - may be called to recalibrate the ac-
celerometer, storing result in EEPROM.1 The board must be
reseting in standard orientation (Z-axis facing up).

2.2.3 Advanced Accelerometer Features

The MMA7455 provides other advanced features such as built-in tilt,
level, and freefall detection with configurable interrupts. The Freefall is
wired so that the accelerometer may interrupt the AVR, for example,
to wake it from sleep. However, the current version of the C driver
does not implement these features. For details on implementing these
features yourself, see the MMA7455 datasheet [5].

2.2.4 Sample Data

-4

-3

-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

z-
a
x
is

 d
a
ta

 (
g

)

time (s)

Sample At-Rest Accelerometer Data

Figure 2.2: Sample data from z-axis of accelerometer in standard orien-
tation. AVR was clocked at 12MHz and reported data live over USB.
Noise level is ±30mg. Lower noise levels may be achieved by mak-
ing measurements during AVR sleep or while the processor is set to a
lower clock speed. Plotting was done using gnuplot on output from
hidstream.

1This calibration information will remain in EEPROM even after reprogramming
using the USB bootloader.

Power Management (PMAN module) 19

2.3 Power Management (PMAN module)

The Freefall is designed to run off a battery pack and/or bus power
from a USB port. On-board battery charging circuitry may be em-
ployed to recharge the battery pack while the Freefall is running on
USB power. The rate of charge may be controlled through PWM,
and battery charge status may be monitored by battery voltage and
temperature measurements.

A library of power management functions is provided to ease the
implementation of battery recharging in a firmware application.

• pman init() - sets proper data direction and slow charge mode.
This function must be called shortly after reset if batteries are
used.

• pman set rate(uint8 t duty) - sets charge rate duty cycle be-
tween 0 (slowest) and 255 (fastest).

• pman fast() - sets fastest charge mode (equivalent to
pman set rate(255)).

• pman slow() - sets slowest charge mode (equivalent to
pman set rate(0)).

• pman vext() - returns the voltage of the Vext pin (i.e., the USB
bus voltage) as a float in units of volts.

• pman vbatt() - returns the voltage of the Vbatt pin (i.e., the
battery pack, if attached) as a float in units of volts.

• pman vbatt() - returns the voltage of the Vbatt pin (i.e., the
battery pack, if attached) as a float in units of volts.

• btemp voltage() - returns the voltage of the BTEMP pin as a
float in units of volts.

• btemp C() - returns the temperature read by the BTEMP tem-
perature sensor2 in degrees Celsius.

2This sensor must be a MCP9700 for this function to return the correct temper-
ature reading. If you use some other sensor, you will have to change the formula in
this function.

20 Freefall API Reference

2.4 USB Connectivity

The Freefall is optimized for use with VUSB, a software USB stack
developed by Objective Development, GmbH. Examples are provided
for configuring the Freefall as a HID device, which operates with all
major PC operating systems without drivers. In this configuration,
one can emulate a real human-interface device (a keyboard, mouse, or
joystick) or use the protocol for the exchange of arbitrary data between
the Freefall and PC software.

2.4.1 Hardware

To use USB connectivity, the Freefall must be connected to a USB
host (PC) via a USB cable, according to the pin descriptions given in
Section 1.2.1.1.

2.4.2 Firmware for USB Mouse

To behave as a USB mouse, a firmware application must do the follow-
ing:

• Include the usbmouse.h header file.

• Initialize the USB device by running usbmouse init().

• Periodically send x and y deltas to the PC, using the
usbmouse update(x,y).

For details, see firmware example called tilt-mouse, which moves
the mouse pointer on your PC according to how the Freefall is tilted.

2.4.3 Firmware for Custom Packet I/O

To send and receive custom data packets, a firmware application must
do the following:

• Include the usbpack.h header file.

• Initialize the USB device by running usbpack init().

• Set the values to be sent in the outgoing packet, called uint8 t

packet out[8], as desired.

• Periodically send the packet by running usbpack update().

• Read received values from the incomming packet, called uint8 t

packet in[8].

USB Connectivity 21

• The usbpack driver updates the counters uint8 t

packets received and uint8 t packets sent, which may
be used if desired.

For details, see the firmware example called sensor-report, which
sends the values read from the x, y, and z accelerometer axes, the CdS
light sensor, and the several power management sensors to the PC.
This firmware example also receives data from the PC: the 0th and
1st bytes of the received packet set the LED0 and LED1 duty cycles,
respectively.

2.4.4 Software for Custom Packet I/O

Raw Data in Text-Mode

The hid-stream program may be used on the PC to read data sent by
the Freefall using usbpack and send it to standard output. To do so,
in the hid-stream directory run:

sudo ./hidstream .

Likewise, you can send a packet to the Freefall by sending it to
hidstream on standard input.

22 Freefall API Reference

Figure 2.3: Example hidstream output. The first column is the UNIX
timestamp of the incoming packet. The following columns are sent by
the user’s firmware application.

Real-Time Plots

Other software may be then used to display and analyze the data. For
example, the SteamingPot application may be used to graph sensor
data in real-time. For example, in the steamingpot directory, run:

steamingpot

RS232 USART Connectivity 23

Figure 2.4: Example steamingpot output.

2.5 RS232 USART Connectivity

The Freefall can also communicate over legacy RS232 using the AVR’s
hardware USART.

2.5.1 Hardware

To use RS232 connectivity, the Freefall must be connected to a PC using
either a level converter (e.g., MAX232) or a USB-to-serial converter.

2.5.2 Firmware for Sending Custom Packets

To send custom data packets over RS232, a firmware application must
do the following:

• Include the usartpack.h header file.

• Initialize the USART by running usartpack init().

• Set the values in the packet, called uint8 t packet data[8], as
desired.

• Periodically send the packet by running usartpack update().

24 Freefall API Reference

2.5.3 Software for Receiving Custom Packets

Raw Data in Text-Mode

The usart-stream program may be used on the PC to read data sent
by the Freefall using usartpack and send it to standard output. To do
so, open putty and set the baudrate for /dev/ttyUSB0 to 57600 baud;
then, in the usart-stream directory run:

cat /dev/ttyUSB0 | ./usartstream .

Other software may be then used to display and analyze the data,
as with hid-stream. For example, the SteamingPot application may
be used to graph sensor data in real-time. See Section 2.4.4.2.

LED Drivers (LED module) 25

2.6 LED Drivers (LED module)

The Freefall is equipped with two 3 ampere LED driver outputs. Each
driver may be placed in one of two states, or in a Pulse-Width Modu-
lated (PWMed) combination of the two.

The default state, corresponding to sending a logic 0 to a driver, is
called “off”, “open”, or “high-z”. In this off state the corresponding
LEDx pin acts as if it were disconnected. Sending a logic 1 to the driver
turns on a N-channel MOSFET, connecting the corresponding LEDx
pin to ground with very low resistance. This is the “on”, “closed”, or
“grounded” state and it is what is used to turn an LED on.

Typically, the user wishes to set a brightness level for an LED some-
what less than that provided by the “on” driver state. This is accom-
plished by setting an 8-bit PWM duty cycle less than 255 (100%).

2.6.1 Hardware

The LED drivers are designed to power high-brightness LEDs with a
nominal 3.4V forward voltage drop. The system has been extensively
tested with a particular LED3, however other high-brightness LEDs
may serve as drop-in replacements.

To power a high-brightness LED, the positive lead of the LED
should be connected to VLED while the negative lead is connected
to one of the LEDn driver pins.

Warning: To drive an LED with a forward voltage drop less than
3.4V (such as standard colored LEDs with voltage drops near 0.7V),
it is necessary to either place several LEDs in series or to use a series
resistor to avoid an over-current condition.

2.6.2 Firmware

Firmware applications may control the LED drivers via the following
functions:

• led0 duty(duty) - sets LED driver 0 to duty-cycle of duty
255 ∗100%

• led1 duty(duty) - sets LED driver 1 to duty-cycle of duty
255 ∗100%

3The C374T-WQN-CT0W0151 manufactured by Cree.

26 Freefall API Reference

2.7 Light Sensor (CDS module)

The Freefall has a special analog input (pin 7, called CDS) designed for
use with a Cadmium Sulfide light sensor (CdS). If you do not wish to
use a light sensor, you can still use the CDS pin as a traditional analog
input by setting the CDS pullup to HZ mode.

2.7.1 Hardware

By default the CDS module assumes that a CDS sensor is attached
between the Freefall’s CDS pin and ground. An on-board 22kΩ pullup
is enabled by default, forming a voltage divider with the light sensor.
Higher light levels result in reduced sensor resistance and therefore
lower voltage at the CDS pin.

2.7.2 Firmware

The following functions control the CDS module:

• cds init() - sets data direction and enables an internal 22kΩ
pullup on the CDS pin. This function must be called before using
the CDS module.

• cds read() - returns a value between 0-255 which is read from
the CDS analog input.

• cds voltage() - returns the voltage of the CDS pin as a float
in units of volts, derived from a 10-bit ADC measurement. By
default, higher voltages correspond to lower light levels and vice
versa.

• cds percent() - returns the brightness level as a float in units
of percent, derived from a 10-bit ADC measurement.

• cds mode pullup() - (re)configures the internal resistor to pull
up. This is the default setting.

• cds mode hz() - disables the internal pullup/down resistor. This
mode should be used if you want to use the CDS pin as a generic
analog input.

• cds mode pulldown() - configures the internal resistor to pull
down. In this configuration the CDS sensor should be wired be-
tween the CDS pin and a VDD pin.

Wireless (MiRF module) 27

2.8 Wireless (MiRF module)

If wireless communication is desired, the Freefall may be easily aug-
mented with a wireless module (MIRF) based on the nRF24L01+ from
Nordic Semiconductor. Two Freefall boards may communicate with
eachother if they are both equipped with MIRF modules. Moreover, a
MIRF-equipped Freefall board can communicate with other devices on
the same band using the ANT protocol, although an ANT implemen-
tation is not provided.

2.8.1 Hardware

To attach a MIRF module to the Freefall, the following pins must be
connected between the MIRF module and the Freefall using a cable or
individual wires of length less than 10cm:

MIRF pin Freefall pin
VCC 20 VDD
CSN 14 MSS
MOSI 15 MO
IRQ none
MISO 16 MI
SCK 17 SCK
CE 13 MM
GND 18 GND

2.8.2 Firmware

To communicate wirelessly using a MIRF module, the mirf driver is
used. A simple firmware example is to repeatedly transmit sensor data
to a PC for analysis. Such a transmitter program must do the following:

• Set the transceiver channel and packet size using defines at the
top of your main.c, before including freefall.h; for example:

#define MIRF_CHANNEL 2

#define MIRF_PAYLOAD 8

• Allocate memory for a data packet of length MIRF PAYLOAD; for
example:

uint8_t packet[MIRF_PAYLOAD];

28 Freefall API Reference

• Configure the MIRF module by running the mirf config() func-
tion. This sets-up configuration registers inside the MIRF; for
example:

• Load the data that you wish to transmit into into packet.

• Call mirf send(packet,MIRF PAYLOAD) to transmit the packet
to another Freefall running a receiving program.

2.8.3 Software

A PC may be used to collect data sent by a Freefall board or to send
data to a Freefall board over either USB or legacy RS232. If the Freefall
board attached to the PC is equipped with a MIRF module, it is pos-
sible to establish wireless communication between the PC and other
wireless boards.

Arduino-compatability 29

2.9 Arduino-compatability

The Arduino programming language and development environment
may be used to develop for the Freefall. See the software/arduino/

directory for example sketches.

2.9.1 Configuring the Arduino IDE to Program the
Freefall

To allow the Arduino IDE to program a Freefall board, replace
the hardware/boards.txt from the Arduino software with the
software/arduino/boards.txt file included with the Freefall software
in the arduino directory.

After opening the Arduino IDE, navigate to the menu option Tools

> Boardsand select the “Freefall” option with the desired programming
method.

2.9.2 Correspondence between Freefall Pins and
Arduino Pins

The following table gives the corresponding Arduino pin for each
Freefall pin whenever such a correspondence exists. Note that there
are significant differences between the behavior of some pins on the
Arduino and their correspondents on the Freefall. See Section 1.1.5 for
details on individual pins.

30 Freefall API Reference

Freefall pin Arduino Pin
2 VDD 3v3
3 GND GND
4 BTEMP A3
7 CDS A2
8 LED0 D6*
9 LED1A D5*
11 LED1B D5*
13 MM D4
14 MSS D7
15 MO D11
16 MI D12
17 SCK D13
18 GND GND
19 RST reset
20 VDD 3v3
21 TX D1
22 RX D0
24 GND GND

(*) pin behavior is significantly different than that on the Arduino. See
Section 1.1.5.

Code Licensing 31

2.10 Code Licensing

The user of the Freefall assumes all responsibility for proper licensing
of his/her own firmware. Note using code from the several open-source
libraries which are bundled with Freefall may obligate you to release
your source code under a particular open-source license. For details, see
the license information in any libraries you may be using. That said,
we have taken pains to ensure that all code provided from Stingworks
is licensed under compatible open-source licenses, such as the GNU
Public License (GPL) or a BSD/MIT-style license.

32 Source Code Examples

Chapter 3

Source Code Examples

3.1 Blinkenlights

/*

* Freefall Blinkenlights Example

*/

#include"freefall.h"

void main()

{

// initialize the Freefall

freefall_init ();

// begin main loop

while (1)

{

led0_duty (0); // LED0 off

_delay_ms (100); // wait 1/10th sec

led0_duty (255); // LED0 on

_delay_ms (100); // wait 1/10th sec

// watch dog must be reset

// at least once every four seconds

wdt_reset ();

}

}

34 Source Code Examples

3.2 Reading a Light Sensor

/*

* Freefall CdS Light Sensor example

*/

#include"freefall.h"

void main()

{

// initialize the Freefall

freefall_init ();

// begin main loop

while (1)

{

// LED0 duty cycle varies directly

// with observed brightness

led0_duty(cds_read ());

// LED1 duty cycle varies inversely

// with observed brightness

led1_duty (255- cds_read ());

wdt_reset ();

}

}

Reading the Accelerometer 35

3.3 Reading the Accelerometer

/*

* Freefall Accelerometer Example

*

* LED0 lights when the board is tilted to the

* left , and LED1 lights when the board is tilted

* to the right.

*

* Note: this is an autistic program.

*/

#include"freefall.h"

void main()

{

// initialize the Freefall

freefall_init ();

// begin main loop

while (1)

{

if (mma7455_read_y () > 0) {

led0_duty (0);

led1_duty (255);

} else {

led0_duty (255);

led1_duty (0);

}

wdt_reset ();

}

}

36 Source Code Examples

3.4 USB Sensor Reporting and Control

/*

* Freefall Sensor Reporting example

*

* Sensor data is read and sent over usb as HID

* packets. Run the SteamingPot or hidstream

* programs on the PC to receive , visualize ,

* and store this data.

*/

#include"freefall.h"

#include"usbpack.h"

void main()

{

long count;

freefall_init (); // initialize Freefall

usbpack_init (); // initialize usb packet module

while (1) // main loop

{

count ++;

// read the accelerometer

packet_out[FREEFALL_AX] = mma7455_read_x ();

packet_out[FREEFALL_AY] = mma7455_read_y ();

packet_out[FREEFALL_AZ] = mma7455_read_z ();

usbpack_update (); // communicate with PC

pman_update (); // read power sensors

wdt_reset (); // reset the watchdog timer

}

}

Tilt-Controlled Mouse 37

3.5 Tilt-Controlled Mouse

/*

* Freefall Tilt -Mouse example

*

* Tilt the Freefall to move the mouse pointer

* on the PC. Note that the Vendor/Product ID

* pair used in this example is taken from a

* Logitech mouse. This is for demonstration

* use only! Do not publish any hardware using

* these IDs.

*/

#include"freefall.h"

#include"usbmouse.h"

int main(void)

{

uint8_t button = 0;

uint8_t click_timer = 0;

int8_t x,y,z;

freefall_init ();

usbmouse_init ();

while (1) {

// get readings from accelerometer

y = mma7455_read_x ();

x = -mma7455_read_y ();

z = mma7455_read_z ();

// squelch noise axes

if (abs(x) < 5) x = 0;

if (abs(y) < 5) y = 0;

// shake to click ,

// invert to drag

button = 0;

if (z < 10) button = 1;

// set the new mouse state

usbmouse_update(x,y,button);

wdt_reset ();

}

return 0;

}

38 Source Code Examples

References

Microcontroller

[1] ATmega48/88/168 Datasheet, ATMEL, inc., Rev. 2545-
AVR-07/09
http://www.atmel.com/dyn/resources/prod_documents/

doc2545.pdf

[2] AVR: In-System Programming, ATMEL, inc., www.atmel.
com/atmel/acrobat/doc0943.pdf

Battery Module

[3] Low-Power Linear Active Thermistor ICs, Microchip, inc.,
DS21942E
http://ww1.microchip.com/downloads/en/DeviceDoc/

21942e.pdf

Wireless

[4] nRF24L01+ Datasheet, Nordic Semiconductor, Revision 1.0,
Sept 2008
http://www.nordicsemi.com/files/Product/data_sheet/

nRF24L01P_Product_Specification_1_0.pdf

Accelerometer

[5] MMA7455L Datasheet, Freescale Semiconductor, Rev 10,
12/2009
www.freescale.com/files/sensors/doc/data_sheet/

MMA7455L.pdf

40 Notes

Notes 41

42 Notes

Index

5V input, 9

accelerometer, 2, 17
analog input, 26
ANT, 27
API, iv
Arduino, 29
AVR, 2

battery charging, 2, 19
battery temperature, 7
battery voltage, 7
bootloader, 4, 10, 12
breadboard, 1

CDS, iv, 26
charging, 2, 19
clock frequency, 2
coordinate system, 17
crystal, 2

drivers, 20

firmware, 4
flashing, 10
fuses, 12

GPL, 31

hardware, 1
HID, iv, 20
hidstream, 21

IDE, iv, 29
ISP, iv, 11

LED, iv, 8, 25

licensing, 31
light sensor, 8, 26

memory, 2
microcontroller, 2
MiRF, iv, 27
MISO, iv
MMA, iv
MMA7455, 17
modules, 4
MOSI, iv
mouse, 20

NiMH, iv, 2

open-source, 2, 3
orientation, 17
output driver, 8
output drivers, 25

package, 1
packets, 20, 23
PCB, iv
PDIP, iv
pin descriptions, 7
PMAN, iv, 19
power management, 19
programming, 10
protocol, 20
pull up/down, 26

RAM, iv
regulator voltage, 7
reset pin, 9
reset procedure, 11
ribbon cable, 11

44 Index

RS232, iv, 12, 23
RSTDISBL, 12
RX, iv

sample data, 18
SCK, iv
serial, 12, 23
software, 3
SPI, iv, 9, 11
SPIEN, 12
SteamingPot, 22

temperature, 7
TX, iv

USART, 23
usart-stream, 24
USB, iv, 10, 20
USBPACK, 20

warnings, 12, 13, 25
WDTON, 12
wireless, 2, 27

